Diffie-Hellman Key Distribution Extended to Group Communication

Michael Steiner

Gene Tsudik Michael Waidner

IBM Ziirich Research Laboratory
CH-8803 Riischlikon, Switzerland
{sti,gts,wmi}@zurich.ibm.com

Abstract

Ever since 2-party Diffie-Hellman key exchange was first pro-
posed in 1976, there have been efforts to extend its sim-
plicity and elegance to a group setting. Notable solutions
have been proposed by Ingemarsson et al. (in 1982) and
Burmester/Desmedt (in 1994). In this paper, we consider a
class of protocols that we call natural extensions of Diffie-
Hellman to the n-party case. After demonstrating the se-
curity of the entire class based on the intractability of the
Diffie-Hellman problem we introduce two novel and practi-
cal protocols and compare them to the previous results. We
argue that our protocols are optimal with respect to certain
aspects of protocol complexity.

1 Introduction

It has been almost twenty years since Diffie-Hellman (DH)
2-party key exchange was first proposed in [1]. In the mean-
time, there have been many attempts to extend its elegance
and simplicity to the group setting. The main motivating
factor 1s the increasing popularity of various types of group-
ware applications and the need of doing it securely. Since
key distribution is the cornerstone of secure group commu-
nication, it has naturally received a lot of attention. (See,
for example: [2], [3], [4], [5], [6], [7], [8], [9].) Unfortunately
some of the results are of only theoretical interest, while the
security of some others remains unproven.

In this paper we consider a class of protocols that we
call "natural” extensions of the 2-party Diffie-Hellman key
exchange. We define a generic protocol of this class and
prove its security; provided, of course, that the 2-party Diffie-
Hellman decision problem is hard. This result allows us to
craft a number of protocols without having to be concerned
for their individual security. In particular, we present three
new protocols, each optimal with respect to certain aspects
of protocol efficiency.

This paper is organized as follows. We begin in section
2 by defining a generic group Diffie-Hellman protocol and
proving its security. We then introduce three new group key
distribution protocols in Sections 3.1-3.4 and discuss their
relative merits and drawbacks. Next, in Section 4, we briefly
review some notable previous results. The paper concludes
with the summary/comparison of all current solutions and
some directions for future work.

In proceedings of the 3rd ACM Conference on Computer
and Communications Security, March 14-16 1996, New
Delhi, India.

2 Generic n-Party Diffie-Hellman Key Distribution

2.1 Notation

The following notation is used throughout the paper:

n | number of participants in the protocol
i,7,k | indices of group members (ranging in [1,n])
M; | i-th group member; 1 € [1, n]
q | order of the algebraic group
exponentiation base; generator in the
algebraic group delimited by q
N; | random exponent generated by group member M;
S, T | subsets of {N1,...,N,}
II(S) | product of all elements in subset §
K, | group key shared among n members
(we also use K when n is obvious)

2.2 Generic Protocol

We consider a family of protocols that we refer to as "nat-
ural” extensions of the original, 2-party Diffie-Hellman key
exchange [1] to n parties.

Like in the 2-party case, all participants M, ..., M,, agree
a priori on a cyclic group, G, of order ¢, and a generator, «,
of this group G. For each key exchange, each member, M;,
choses randomly a value N; € G.

In the 2-party case, M; sends a™* to Ma_; and computes
the common key K = (ozN3—’)N’. For appropriately chosen
G (see below) it is reasonable to assume that an adversary
observing (o™, a™?) cannot distinguish K from a random
value y € G.

All our protocols are based on distributively computing a
subset of {a™$) | & C {Ny,..., No}} From oM Vimi Vg1 Na
member M; can easily compute the shared key K = a1 ¥n .

We call the protocol that reveals all these subsets the
generic n-party DH protocol. Before presenting our proto-
cols, we will prove that this generic protocol is secure. In
this context, security means:

if a 2-party key is indistinguishable from a random
value, the same is true for n-party keys.

Obviously, this will prove the security of all of our proto-
cols at once.

2.3 Security of the Generic Protocol

Let k be a security parameter. All algorithms receive k as
first input, implicitly, and will be polynomially bounded by
k. even if the input itself is not bounded.

For concreteness, we consider a specific class of algebraic
groups for which it is commonly assumed that the 2-party key
is computationally indistinguishable from a random value:
On input k, algorithm gen choses randomly a pair (g, a)
such that g has length k bit, ¢ and ¢’ = 2¢ + 1 are both
prime, and « generates the unique subgroup G of Z;/ of

www.manaraa.com

order q. Groups of this type are used, e.g., in [10] and [11].
The indistinguishability of the 2-party key is considered, e.g.,

n [12].

For (q,a) < gen(k), n € N, and X = (Ny,..., Ny) for
N; € Zq, let

e view(q, a,n, X) := the ordered set of all a™i1 Mim for

stm} of {1,...,n},

all proper subsets {1, ...

o K(qo,n,X):=aM1Nn,

If (g,) are obvious from the context, we omit them in view()
and K(). Note that view(n,X) is exactly the view of an
adversary in the generic n-party DH-protocol, where the final
secret key is K (n, X). Let the following two random variables
be defined by generating (q,a) + gen(k) and choosing X
randomly from (Z,)™:

o A, := (view(n, X),y), for a randomly chosen y € G,
o Dy, = (view(n, X), K(n, X)).
Let 7a2,01,” denote polynomial indistinguishability.
Theorem:

For each constant n, A,y D2 implies Ap=po1y Dn.

Proof (by induction on n):
Assume that Asrpoy D2 and An—1%p0y Dr—1. Thus, we have
to show Ap=p01y Dn. We do this by defining random variables
By, Cy, and showing Ap=pe1y Brnxpoly CnXpoiyDn, which im-
mediately yields: An=po1y Dn.

We can rewrite view(n, (N1, N2, X)) with X =
as a permutation of:

(Na,...,Np)

((wiew(n —1,(N1, X)), K (n—1,(N1, X)),
view(n — 1, (N2, X)), K(n — 1, (N2, X)),
view(n — 1, (N1 Nz, X)))

and K (n,(Ni, N2, X)) as K(n— 1, (N1 N2, X)).

We use this to redefine A, and 1),,. All in all, we consider
the following four distributions. All of them are defined by
(g, @) < gen(k), choosing ¢, N1, N2 € Z 4 and X € (Z)"
and y € GG randomly.

o Ay = (view(n — 1, (N1, X)), [X (n—1,(N., X)),
U;ew(n— 1, (N2, X))),B (n— (N27X))7
view(n — 1, (N1 N2, X)), y)

N1, X)), K(n—1,(N., X)),
), K(n =1, (N2, X)),

* B, = (Uiew(
view(n — 1,
view(n — 1,

L
Na, X))
¢, X)) y)
o O = (view(n — 1, (N1, X)), K(n— 1, (N1, X)),
vz}ew(n—l7 Q,X))),[X(n—l (N2, X)),
view(n — 1, (¢, X)), K(n—1, (¢, X)))

o Dy = (view(n—1,(N1, X)), K(n—1,(N1, X)),
Uz:ew(n —1,(N2, X)), K(n—1, (N2, X)),
view(n — 1, (N1 N2, X)), K(n — 1, (N1 N2, X)))

A,_\ A/—\

Note that only the last two components vary.
Anrpoy By follows from Asms, o1, Dot
Assume that adv distinguishes A,, and By, and let (u, v, w)
be an instance of As=x,.y02. We produce an instance for
adv by using u for o™ v for o™, and w for ™2 (or a®),
and choosing X and y randomly. If (u,v,w) belongs to As
(D3), this new distribution belongs to A, (D).

Brxp0y,Cr follows from A,_1~p0y Dn_it
Assume that adv distinguishes B, and Cy, and (ignoring a
necessary permutation in order) let: (view(n —1,(c, X)),y)
be an instance for A,_1%p0y Dn_1 (i.e.7 the problem 1is to
decide whether y = K(n—1, (¢, X)).) We produce an in-
stance for adv by choosing N1, N» randomly, and computing
(view(n—1,(Ny, X)), K(n—1,(Ni, X))) based on those val-
ues in view(n — 1, (¢, X)) that do not contain ¢ as an expo-
nent. The rest follows as in the last case.

Crxpoy Dy follows from Az=,0, D2, almost exactly like
the first statement. The only difference is that we do not
choose y randomly, but as K (n — 1, (w, X)).

3 Group Key Distribution Protocols

Having demonstrated the security of the generic protocol, we
now turn to the specific examples drawn from the “natural”
protocol family.

3.1 Group Key Distribution: GDH.1

The protocol (GDH.1) depicted in Figure 1 is quite simple
and straight-forward. It consists of two stages: upflow and
downflow. The purpose of the upflow stage is to collect con-
tributions from all group members. As shown in the fig-
ure, M; receives a collection of intermediate Values The
task of each M; on the upflow is to compute a1 N by
raising o™ Yi-1 _ the highest numbered incoming inter-
mediate Value — to the power of N;, append it to the in-
coming flow and forward all to M;11. For example, My re-

ceives the set {a™t, a™1M2 o1 V2Ne} and forwards to Ms:
{O{N17aN1N27aN1N2N37O{N1N2N3N4}.

M; M; 44
{a VR e 1,)
Stage 1 (Upflow): Round 7; ¢ € [1,n — 1]
Mn—i Mn—i—l—l

{aM R RELID |5 e 1,4}

Stage 2 (Downflow): Round (n —1+1); i € [1,n —1]

Figure 1: Group Key Distribution — GDH.1

To summarize the upflow stage, each group member per-
forms one exponentiation and an upflow message between
M; and M;4+1 contains ¢ intermediate values.

The final transaction in the upflow stage takes place when
the highest-numbered group member M, receives the upflow
message and computes (™1 ¥n=1)¥n which is the intended
group key K.

After obtaining K, M, initiates the downflow stage. In
this final stage each M; performs 1 exponentiations: one

www.manaraa.com

to compute K, and (¢ — 1) to provide intermediate val-
ues to subsequent (lower-indexed) group members. For ex-
ample, assuming n = 5, M, receives a downflow message:
{aV5, o105 o N1N2Ns (NiNoNaNsy o Pirst it uses the last
intermediate value in the set to compute K,,. Then, it raises
all remaining values to the power of N4 and forwards the re-
sulting set: {54 oM1¥eNa o NMiN2NeNal 6 Ar, (Tn gen-
eral, the size of a downflow message decreases on each link;
a message between M;41 and M; includes 1 intermediate val-
ues.)
In summary, GDH.1 has following characteristics:

rounds | 2(n — 1)

messages | 2(n — 1)

combined message size | (n — 1)n
exponentiations per M; | (¢ 4+ 1) for ¢ < n, n for M,

total exponentiations @ -1
The main drawback of GDH.1 is its relatively large num-
ber of rounds. At the same time, GDH.1 imposes no special
communication requirements, i.e., no broadcasting or syn-
chronization is necessary.

3.2 Group Key Distribution: GDH.2

In order to reduce the number of rounds in GDH.1 we mod-
ify the protocol as shown in Figure 2. The upflow stage is
still used to collect contributions from all group members;
the only change is that each M; now has to compose ¢ in-
termediate values (each with (¢ — 1) exponents.) and one
cardinal value containing 1 exponents. For example, My re-
ceives a set: {a™M1¥2Ns o MilN2 (NMiNa o NaN2Y and outputs

. NiNaN3Nsy NiNoNs NiNoNs NiNsNs NaNaNy
a set: {a , , , ,

The cardinal value in this example is a™1V2VaNe By
the time the upflow reaches M, the cardinal value becomes
a™i Va1 A s thus the first group member to compute
the key K. Also, as the final part of the upflow stage, M,
computes the last batch of intermediate values.

In the second stage M, broadcasts the intermediate val-
ues to all group members.

GDH.2 has the following characteristics:!

rounds
messages
combined message size —(n/2+2)-1
exponentiations per M; + 1) for ¢+ < n, n for M,
total exponentiations L"_+23M -1
In GDH.2, more so than in GDH.1, the highest-indexed
group member M, plays a special role by having to broadcast
the last round of intermediate values. The main advantage
of GDH.2 is due to its low number of protocol rounds; n as
opposed to almost twice as many in GDH.1.

33

e —

n
]

3.3 Practical Considerations

To summarize our discussion this far, GDH.1 and GDH.2
offer the following advantages:

1. No a priori ordering of group members
Sequencing and numbering of M;-s can take place in
real time, as the protocol executes. Of course, the start-
ing participant automatically becomes M.

2. No synchronization
The protocol assumes asynchronous operation; no clock
or round synchronization is necessary.

1Assuming atomic, one-message broadcast.

Mi Mi-l—l

{O[H{Nﬂke[lyi]/\k;@” = |:17 i]},Ole*"'*N’

Stage 1 (Upflow): round ¢; i € [1,n — 1]

M; M,

{O{H{Nklke[lyn]/\k#i” i e[1,n]}

Stage 2 (Broadcast): round n

Figure 2: Group Key Distribution: GDH.2

3. Small number of exponentiations
Number of exponentiations depends on the participan-
t’s index 3. On the average, each M; will perform n/2
exponentiations.

4. Minimal total number of messages (GDH.2)
It is easy to see that at least n messages are required
in any group key agreement protocol, i.e., each M; has
to contribute its own share of the key.

5. Minimal number of rounds for asynchronous operation

(GDH.2)

In order to construct a true DH key — K,
— each participant needs to contribute its own expo-
nent. Assuming that the protocol starts asynchronously
(first round initiated by M;), only one M; can add its
own exponent in a given round. Otherwise, either i)
exponents have to be revealed, or ii) there has to be

— ANl]}

a way to construct K, from a8 and o™7) where
SUT = {Ni,...,N,}. Both (i) and (ii) violate our

basic premises.

6. Minimal number of messages sent /received by each par-
ticipant (GDH.2)
Proof outline: Assume that there exists a protocol
that constructs a DH key and requires each M; (other
than M; or Mn) to send one and receive one message.

One possibility is that M; receives a message before
sending one. In that case, from the message received,
M; must be able to construct K, — since no further
messages will be received. The message received must
contain ozH({Nl"“’N"}_N’), since there is no other way
for M; to construct K. This means that every M,
(7 # 1) has already contributed its exponent Nj, and,
hence, already received (except M) and subsequently
sent, a message. Therefore, M; = M,, and 1 = n since
this can can only take place in (n — 1)-st round.

If we assume that M; sends a message before receiving
one then M; = M1, because the protocol runs asyn-
chronously, i.e., only M; can start the protocol.

www.manaraa.com

7. Security equivalent to 2-party Diffie-Hellman
As shown in Section 2.3 above.

8. Implementation simplicity

Just like 2-party Diffie-Hellman, GDH.1 and GDH.2 re-
quire only the modular exponentiation operation and
the random number generator for the protocol exe-
cution. This means that, given a black-box realiza-
tion of 2-party Diffie-Hellman, GDH.1/2 can be imple-
mented thereupon without any additional arithmetic
operations.

3.4 Group Key Distribution: GDH.3

In certain environments, it is desirable to minimize the amount
of computation performed by each group member. This is
particularly the case in very large groups. Since GDH.1/2
both require (i+ 1) exponentiations from every M;, the com-
putational burden increases as the group size grows. The
same, of course, is true for message sizes.

Mi Mi-l—l

QN kel i}

Stage 1 (Upflow): Round 7; ¢ € [1,n — 2]

Mi Mn—l

Q TNk IREln=1]}

Stage 2 (Broadcast): Round n —1

M; M,

aH{Nk |k€[l,n—1]Ak#:}

Stage 3 (Response): Round n

M; M,

{aH{Nk|ke[1,n]Ak¢i}| ic |:17 n— 1]}

Stage 4 (Broadcast): Round n +1

Figure 3: Group Key Distribution: GDH.3

In order to address these concerns we construct a pro-
tocol that is quite different from GDH.1/2 (see Figure 3.4.)
The protocol consists of four stages. In the first stage we
collect contributions from all group members similar to the
upflow stage in GDH.1. After processing the upflow message

T{Ng|k€[l,n—1]}

M, _1 obtains « and broadcasts this value in

the second stage to all other participants. At this time, every
M; (z #* n) factors out its own exponent and forwards the
result to M,,. (Note that factoring out N; requires comput-
ing its inverse — Ni_l. This 1s always possible if we choose
the group q as a group of prime order). In the final stage,
M, collects all inputs from the previous stage, raises every
one of them to the power of N,, and broadcasts the resulting
n — 1 values to the rest of the group. Every M; now has a
value of the form oM {NkIFELINAZEDT 40 g can casily generate
the intended group key K.
This protocol — GDH.3 — has two appealing features:

e Constant message sizes

e Constant (and small) number of exponentiations for
each M;

(except for M,, with n exponentiations required)

I[ts properties are summarized in the following table:

rounds | n+1
messages | 2n — 1
combined message size | 3(n — 1)

4fori<(n—1),
2 for My—1, n for M,
Sn—6

exponentiations per M;

total exponentiations

3.5 Alteration of Group Membership

Thus far, we have assumed that the exact group membership
is determined prior to the execution of our protocols. How-
ever, 1t is oftentimes necessary to either add a new, or delete
an existing, group member after the initial group creation.
Naturally, it is desirable to do so without having to re-run
the entire protocol anew. To this end, we briefly sketch out
below the member addition and member deletion protocols
for GDH.2 and GDH.3. (GDH.1 does not lend itself to ef-
ficient construction of such protocols.) For a more general
solution to the secure group membership see, e.g. [16].

3.5.1 Member Addition

The main security requirement of member addition is the
secrecy of the previous group keys with respect to both out-
siders and new group members.

In GDH.2 this can be achieved as follows:

1. We assume that M, saves the contents of the Upflow
message (Stage 1, round n — 1 in Figure 3.4.)

2. M, generates a new exponent Nn and computes a new
upflow message (using Ny, not Ny):
{aH{Nk|ke[1,i]Ak¢]}|] c |:17 n]}7 aNl*...*Nn_l *Np,

and sends it to the new member, M, 4.

3. M,41 generates its own exponent and computes the
new key [(n+1 — aN1*~~~*Nn*Nn+1

4. Finally, as in the normal protocol run, M, 41 computes
n sub-keys of the form:
{O{H{NkIke[lyil/\k;«ff]}|;J e [1,n]}
and broadcasts to the other group members.

Member addition in GDH.3 is almost identical to that in
GDH.2. M, has to save the contents of the original Broad-
cast and Response messages (Stage 2 and 3 in Figure 3.) M,
generates a new exponent and, with it, computes a new set of
sub-keys which it forwards to the new member M, 41. Mn41

www.manaraa.com

computes the new key K,41 and adds its own exponent to
each of the n sub-keys it received. Finally, M, 41 broadcasts
the sub-keys as in Stage 4 of GDH.3 and all members com-
pute Kpy1.

The extensions to GDH.2/3 are quite straight-forward
and require only two additional rounds per each new mem-
ber. The new key, K41 is easily computable by all parties
and retains the same secrecy properties as K,. However,
while all other group members compute K,4+1 with a single
exponentiation, My, is required to perform n exponentiations
in addition to generating a new exponent. This extra burden
on M, may be undesirable.

3.5.2 Member Deletion

The main security requirement of member deletion is the
secrecy of the subsequent (future) group keys with respect
to both outsiders and former group members.

Protocol extensions for member deletion in both GDH.2
and GDH.3 are very similar to those for member addition.

Let M, be the member slated for removal from the group.
We assume, for the moment, that p € [1,n — 1], i.e., p # n.
M,,, once again, plays a special role by generating a new
exponent N,. This time, however, M, computes a new set
of n — 2 sub-keys: {@MVkIFELANREIT | 5 e 11 — 1Ak £
p} and broadcasts them to all group members. Note that,

: Ni#,...,Np_1,N, wsNyp_1,Np e
since 1" o p=1Aptl s Ba—18n jg migsing from the set of

broadcasted sub-keys, the newly excluded M, is unable to
compute the new group key.

In the event that M, is to be removed from the group,
M, _1 assumes the special role as described above.

4 Related Work

In this section we briefly review some notable previous work
in DH-like protocols. A detailed and up-to-date discussion
of this subject can be found in [7].

4.1 Ingemarsson et al.

The protocol depicted in Figure 4 is one of the family of
protocols proposed by Ingemarsson et al. in [3]. (See also
[13].) This protocol — hereafter referred to as ING — requires
a synchronous startup and completes in (n — 1) rounds. The
participants must be arranged in a logical ring. In a given
round, every participant raises the previously-received in-
termediate key value to the power of its own exponent and
forwards the result to the next participant. After (n — 1)
rounds everyone computes the same key K.

Mi M(i—l—l)mod n

TN, | jEl(i—k)med n,i})

Figure 4: ING Protocol: Round k; k € [1,n — 1]

The ING protocol has the following characteristics:

rounds | (n — 1)
messages | n(n — 1)
combined message size | n(n — 1)

exponentiations per M;
total exponentiations

=SS
)

We note that, since ING falls into the class of "natural”
extensions of Diffie-Hellman 2-party protocol, the proof of
security in Section 2.3 applies to it as well.

4.2 Burmester/Desmedt Protocol

Burmester and Desmedt present in [9] a much more efficient
protocol. Their protocol is executed in only three rounds:

1. Each user M; generates its random exponent N; and
broadcasts z; = a’Vi.

2. Every M; computes and broadcasts X; = (z,'+1/z,'_1)N’

3. M; can now compute? the key K, = zl"_J\i’ S XPTh

X;l+_12 -+ X;—2> mod p

The key defined by this scheme is different from the previous
protocols, namely K, = oVtV2tV2Not+NaN1 - Neverthe-
less the protocol is proven secure provided the Diffie-Hellman
problem is intractable.

In summary, the BD protocol has the following charac-
teristics:

rounds | 2
messages | 2n
combined message size | 2n
exponentiations per M; | n+ 1
total exponentiations | (n + 1)n
divisions per M; | 1

An important advantage of the BD protocol is its ” cheap”
exponentiations. While the number of exponentiations per
M; is still (n + 1), in all but one the exponent is at most
(n — 1). This makes for big savings in computation.

5 Comparison and Summary

All group key distribution protocols discussed above are sum-
marized and compared in Figure 5.

As indicated in the previous section, BD (and BD*) is
markedly superior to the others with respect to exponentia-
tion operations since almost all operations involve relatively
small exponents.

From Table 5 it is clear that, with respect to time (i.e.,
number of rounds), the BD protocol is well ahead of the rest.
It requires only two rounds of simultaneousbroadcasts as op-
posed to linear (in terms of n) number of rounds in the other
protocols. However, the ability to perform n simultaneous
broadcasts is not a feature available in most network envi-
ronments. Even in a broadcast LAN environment, only one
party can broadcast at any given time. Therefore, it may
be worthwhile to compare the other protocols with BD* — a
version of BD without the simultaneous broadcast feature.
Since BD* would require 2n — 1 rounds, it does not com-
pare with the rest as favorably as plain BD. (On the other
hand, it has been noted® that extra rounds in BD* are due to
nodes waiting for a chance to This is in contrast to GDH.1-3
where rounds are mostly triggered by message arrival. Thus,

2 All indexes are modulo n.
3By one of the referees.

www.manaraa.com

a broadcast round in BD* is shorter than a round in GDH.1-
3)

In the same vein, GDH.3 (in Stage 3, Figure 3) requires
one round of (n — 1) simultaneous unicasts to M,,. We note
that a more realistic GDH.3* would require 2n rounds. On
the other hand, (n—1) simultaneous unicasts in GDH.3 result
in significantly less load as compared with n simultaneous
broadcasts in BD.

In terms of communication bandwidth overhead, GDH.2
leads with only n messages. On the other hand, if we mea-
sure total bandwidth overhead (by tallying all message sizes),
BD* comes out a clear winner with the least total informa-
tion exchanged.

Another important measure of protocol efficiency is the
number of messages received and sent by each partic-
ipant. It is well-known that sending or receiving a message
involves going through the entire protocol stack — a non-
negligible task in terms of both time and resource consump-
tion. Moreover, it is impossible in most (non-specialized)
network architectures for a node to receive multiple messages
simultaneously. This consideration is especially applicable to
both BD and BD* protocols, i.e., regardless of whether all
nodes can broadcast simultaneously, a given node cannot re-
ceive (n — 1) incoming messages all at once. Table 5 clearly
illustrates that GDH.2 involves the least overhead with re-
spect to the communication infrastructure: as part of the
protocol each node sends a single message and receives only
two (except M, and M,, which receive one message.)

Finally, we consider the issue of protocol symmetry. Both
BD/BD* and ING offer symmetric operation.” This is partly
due to their synchronous nature. (An asynchronous protocol
can not be symmetric; someone has to initiate it.) All three
GDH protocols are, to certain extent, asymmetric. GDH.1/2
are both communication-asymmetric. GDH.1 requires M; to
initiate the upflow, and M,, — the downflow, stage. GDH.2 is
similar in that it requires M,, to perform the final broadcast.

GDH.3 is not only communication- but also computation-
asymmetric. The former is because M; and M,_; are re-
quired to initiate stages 1 and 2, respectively. Computa-
tional asymmetry is due to the special role of M, who has
to perform computations different from those of other par-
ticipants. (Note that M,, performs n — 1 exponentiations in
stage 4; however, it does not compute an inverse of N,,.)

6 Conclusions and Future Work

In conclusion, we have defined a class of "natural” exten-
sions of Diffie-Hellman key exchange to the n-party setting
and have shown that the security of a generic n-party pro-
tocol of this class i1s equivalent to the security of the original
2-party protocol. Armed with this general result, we intro-
duced three concrete group key distribution protocols. We
have shown that —in a realistic communication environment
— our protocols are more efficient in some respects than pre-
vious results (or sometimes even optimal.)

There remain some items for future work. Our protocols
do not provide authentication of the participants. It should
be possible to augment them to provide authentication in
a manner similar to that described in [9] or [14]. Another
issue to address is protocol extensions for handling periodic
re-keying. Finally, more formal (and convincing) arguments
need to be developed to support optimality /minimality claims
in Section 3.3.

4the version of Burmester/Desmedt protocol without simultaneous
broadcast.

5In other words, all participants do the same thing.

Acknowledgements

The authors are grateful to the anonymous referees for their
many helpful comments.

References

[1] Whit Diffie and Martin Hellman. New Directions In
Cryptography. IEEE Transactions on Information The-
ory, IT-22(6):644-654, November 1976.

[2] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A
Secure Audio Teleconference System. In S. Goldwasser,
editor, Advancesin Cryptology — CRYPTO 88, number
403 in Lecture Notes in Computer Science, pages 520—
528, Santa Barbara, CA, USA, August 1990. Springer-
Verlag, Berlin Germany.

[3] 1. Ingemarsson, D. Tang, and C. Wong. A Conference
Key Distribution System. [EFE Transactions on Infor-
mation Theory, 28(5):714-720, September 1982.

[4] Hugh Harney, Carl Muckenhirn, and Thomas Rivers.
Group Key Management Protocol (GKMP) Architec-
ture. INTERNET-DRAFT, September 1994.

[5] Yi Mu, Yuliang Zheng, and Yan-Xia Lin. Quantum Con-
ference Key Distribution Systems. Technical Report 94-
6, University of Wollongong, NSW, Australia, 1994.

[6] Chin Chen Chang, Tzong Chen Wu, and C.P. Chen.
The Design Of A Conference Key Distribution System.
In Advances in Cryptology — AUSCRYPT ’92, Lecture
Notes in Computer Science, pages 467-474. Springer-
Verlag, Berlin Germany, December 1992.

Michael K.Just. Methods Of Multi-party Cryptographic
Key Establishment. Master’s thesis, Ottwa Carleton
Institute for Computer Science, Caleton University, Ot-
tawa, Ontario, August 1994.

=

[8] Tzonelih Hwang. Cryptosystem For Group-oriented
Cryptography. In [.B. Damgard, editor, Advances in
Cryptology — EUROCRYPT ’90, number 473 in Lecture
Notes in Computer Science, pages 352-360. Springer-
Verlag, Berlin Germany, May 1991.

[9] M. Burmester and Y. Desmedt. A Secure And Efficient
Conference Key Distribution System. In [.B. Damgard,
editor, Advances in Cryptology — FUROCRYPT ’94,
Lecture Notes in Computer Science. Springer-Verlag,
Berlin Germany, 1994.

[10] C.P. Schnorr. Efficient Signature Generation By Smart
Cards. Journal of Cryptology, 4(3):161-174, 1991.

The Digital Signature Standard Proposed By NIST.
CACM, 35(7):36-40, July 1992.

[11

[ha—”

[12] S. Brands. An Efficient Off-line Electronic Cash Sys-
tem Based On The Representation Problem. Technical
Report CS-R9323, CWI, March 1993.

[13] Bruce Schneier. Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C. John Wiley & Sons, Inc,
1994.

[14] M. Steiner, G. Tsudik, and M. Waidner. Refinement
And Extension Of Encrypted Key Fxchange. ACM Op-
erating Systems Review, July 1995.

www.manaraa.com

ING BD BD** GDH.1 GDH.2 GDH.3
rounds n—1 2 o2n — 1 2(n—1) n n+1
total messages n(n —1) 2n 2n—1 2(n—1) n 2n —1
combined msg size || n(n — 1) 2n 2n n(n—1) L"_+23M 3 3(n—1)
messages n—1 2 2 2 1 2
sent per M; 1 for My, M,
messages n—1 n+1 n+1 2 2 3
received per M; 1 for My, M,, | 1 for My, M, n for M,
exponentiations n nt+1 n+1 1+ 1 14+ 1 4
per M; 2 for M,_1

n — 1 for M,
total n® (n+n | (n+1)n ("4'23)" -1 ("4'23)" -1 5n—6
exponentiations
synchronization Y Y Y N N N
DH key Y N N Y Y Y
symmetry Y Y Y N N N

[15] T. Matsumoto, Y. Takashima, H. Imai. A Method Of
Generating Secret Data Common To All Members Of
A Specified Group. [ECE Technical Report IT85-3/,

September 1985.

[16] M. Reiter, A Secure Group Membership Protocol. IEEE
Symposium On Research in Security and Privacy, May

1994.

Figure 5: Protocol Comparison

www.manaraa.com

